Турниры

Замкнутая орцепь в орграфе G называется эйлеровой орцепью, если она содержит все дуги и все вершины орграфа.

Орграф, содержащий эйлерову орцепь, называют эйлеровым орграфом.

Иными словами, эйлеров орграф — это связный орграф, в котором имеется замкнутый ормаршрут, проходящий точно один раз через каждую его дугу.

Замечание. Связный орграф является эйлеровым орграфом iff, когда для любой его вершины полустепени исхода и захода совпадают.

Гамильтоновой орцепью орграфа называется его незамкнутая простая орцепь, которая проходит через каждую его вершину точно один раз.

Орцикл орграфа, проходящий через каждую его вершину, называется гамильтоновым орциклом.

Орграф называется *полугамильтоновым*, если он обладает гамильтоновой орцепью, и — *гамильтоновым*, если он обладает гамильтоновым орциклом.

О гамильтоновых орграфах в целом известно не очень много. Приведем без доказательства аналог теоремы Дирака.

Теорема 1 (Гуйя–Ури). Пусть G — орсвязный n-орграф. Если все полустепени исхода и захода его вершин $\geqslant n/2$, то G — гамильтонов орграф.

Гуйя-Ури и исследования Л.Н. Шеврина и Н.Д. Филиппова (характеризация графов сравнимости ч. у. множеств в 1962 г.).

Турниром называется орграф, основание которого есть полный граф, т. е. любые две его различные вершины соединены точно одной дугой (точно в одном из направлений) и нет петель.

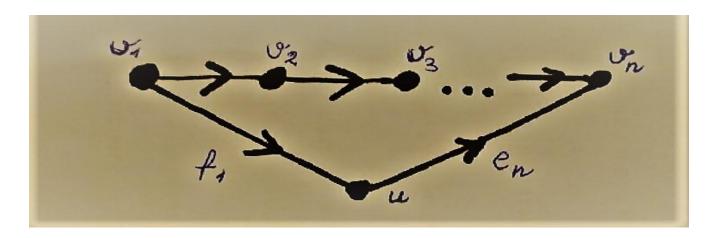
Турнир может иметь *источник* (или *сток*), т. е. вершину, в которой дуги только выходят (соответственно заходят), поэтому турнир может и не гамильтоновым.

Теорема 3.15 (Редеи (1934), Камион (1959)). 1) Любой турнир полугамильтонов. 2) Любой орсвязный турнир гамильтонов.

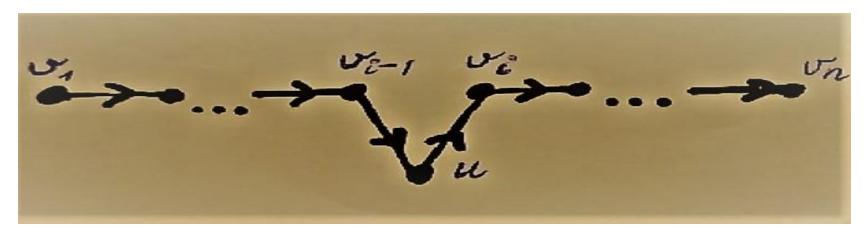
Доказательство. 1) Утверждение очевидно для турнира, содержащего менее трех вершин.

Предположим по индукции, что любой турнир на n вершинах полугамильтонов. Рассмотрим произвольный турнир G, имеющий n+1 вершин, где $n \ge 2$, и произвольную вершину u в нем. По предположению индукции турнир G-u полугамильтонов, т. е. в нем существует гамильтонова орцепь $v_1 \to v_2 \to \cdots \to v_n$. Если в G имеется дуга $e_1 = uv_1$ или дуга $f_n = v_n u$, то турнир G полугамильтонов.

Поэтому можно считать, что в G присутствуют дуги $f_1 = v_1 u$ и $e_n = u v_n$.



В гамильтоновой орцепи турнира G - u возьмем первую вершину v_i , для которой в G имеется дуга $e_i = uv_i$. В силу выбора вершины v_i в G имеется дуга $f_{i-1} = v_{i-1}u$.



Тогда в турнире G получаем гамильтонову орцепь $v_1 \rightarrow \cdots \rightarrow v_{i-1} \rightarrow u \rightarrow v_i \rightarrow \cdots \rightarrow v_n$.

2) Будем доказывать более сильное утверждение: любой неодноэлементный орсвязный турнир G на n вершинах содержит орциклы длины $3, 4, \ldots, n$.

Заметим, что в силу орсвязности турнира $n \ge 3$.

Возьмем в турнире G произвольную вершину v. Множество вершин турнира G-v распадается на два непересекающихся подмножества V_1 и V_2 :



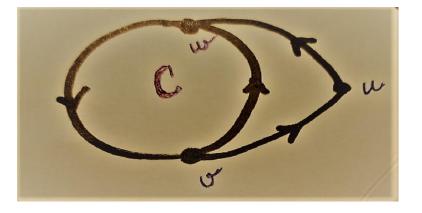
В силу орсвязности $V_1 \neq \emptyset$, $V_2 \neq \emptyset$ и существует дуга $u \rightarrow w$, где $u \in V_2$ и $w \in V_1$.

Поэтому в G имеется треугольник $v \to u \to w \to v$.

Предположим теперь, что в G имеется орцикл $C: v_1 \to v_2 \to \cdots \to v_t \to v_1$ длины t, где $3 \le t < n$. Покажем, что в G имеется орцикл длины t+1. Положим $U = VG \setminus VC$.

Пусть в U имеется вершина и такая, что в G имеются дуги $v \to u$ и $u \to w$, для

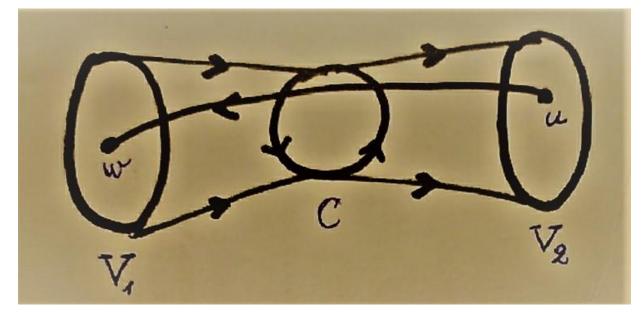
которых v, $w \in VC$ и $v \neq w$:



Рассмотрим на цикле C орцепь от v до w. Рассуждая также, как в доказательстве 1), получим на этой орцепи две соседние вершины а и b с разными направлениями дуг относительно u:

Теперь очевидно, что в G имеется (t + 1)-орцикл.

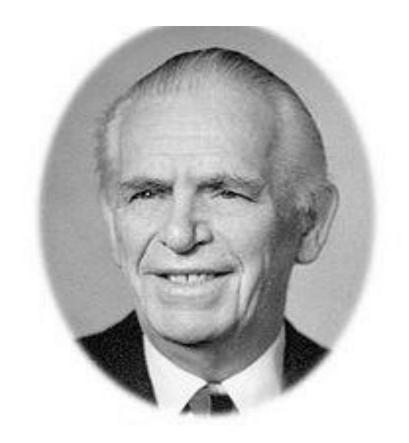
Теперь можно считать, что множество U распадается на два непересекающихся подмножества V_1 и V_2 :



В силу орсвязности $V_1 \neq \emptyset$, $V_2 \neq \emptyset$ и существует дуга $u \rightarrow w$, где $u \in V_2$ и $w \in V_1$. Поэтому в G имеется (t+1)-орцикл:

$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{t-1} \rightarrow u \rightarrow w \rightarrow v_1$$

Теорема доказана.



László Rédei	
Born	15 November 1900 Rákoskeresztúr, Aust ria-Hungary
Died	21 November 1980 (aged 80) Budapest, Hungary
Nationality	<u>Hungarian</u>
Fields	<u>Mathematics</u>

Honoris causa

Совместные работы

- по абелевым группам с Н.Ф. Сесекиным и
- с А.Н. Трахтманом