ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МАТРОИДОВ

Всюду в дальнейшем мы будем рассматривать только конечные матроиды.

Таким образом, матроид M(E) для нас — это конечное непустое множество E вместе с отображением $A \to \langle A \rangle$ множества $\mathcal{P}(E)$ в себя, удовлетворяющее следующим аксиомам: для любых $A,B \subseteq E$ выполняется

- 1) (направленность) $A \subseteq \langle A \rangle$;
- 2) (монотонность) $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$;
- 3) (идемпотентность) $\langle\langle A\rangle\rangle = \langle A\rangle$;
- 4) (аксиома замены) $q \notin \langle A \rangle$, $q \in \langle A \cup p \rangle \Rightarrow p \in \langle A \cup q \rangle \quad (p, q \in E)$.

Обыкновенный матроид удовлетворяет дополнительной аксиоме:

6)
$$\langle \emptyset \rangle = \emptyset$$
 и $\langle p \rangle = p$ $(p \in E)$.

Решетка SubE листов конечного матроида M(E) является конечной геометрической решеткой, т. е. она

- 1) конечна;
- 2) точечна (любой её элемент есть объединение конечного числа атомов);
- 3) полумодулярна.

Пусть M = M(E) — произвольный матроид. Множество $A \subseteq E$ называется *независимым*, если

$$p \notin \langle A \setminus p \rangle \qquad (p \in A)$$

(в противном случае множество A называется зависимым).

Через Ind (M) или просто Ind будем обозначать множество всех независимых подмножеств из E. Отметим, что $\emptyset \in$ Ind.

Лемма 1. 1) Любое подмножество независимого множества независимо. 2) Пусть *A* — независимо и $p \in E \setminus A$. Тогда множество $A \cup p$ независимо iff, когда $p \notin \langle A \rangle$.

Доказательство. Утверждение 1) очевидно.

2) Необходимость следует из определения. Обратно, пусть $p \notin \langle A \rangle$. Возьмем $q \in A$. Если $q \in \langle (A \setminus q) \cup p \rangle$, то по аксиоме замены и условию $q \notin \langle A \setminus q \rangle$ получаем $p \in \langle (A \setminus q) \cup q \rangle = \langle A \rangle$. Следовательно, $q \notin \langle (A \setminus q) \cup p \rangle$ и, очевидно, $p \notin \langle (A \cup p) \setminus p \rangle$, т.е. $A \cup p$ — независимое множество.

Пусть A — произвольное подмножество из E.

Любое максимальное независимое подмножество B, содержащееся в A, называется $\boldsymbol{\delta a so u}$ множества A.

Базы множества E будем называть *базами матроида* M.

Через Bs(M) или просто Bs будем обозначать совокупность всех баз матроида M.

Минимальные зависимые подмножества из E будем называть *циклами* матроида M.

Через Ccl(M) или просто Ccl будем обозначать множество всех циклов матроида M.

Лемма 2. Для любого подмножества A из E выполняется

- 1) $\langle B \rangle = \langle A \rangle$ для любой базы B множества A;
- 2) если I независимое множество из A и B база множества A, то $|I| \le |B|$; в частности, все базы множества A равномощны;
- 3) любое независимое подмножество, содержащееся в A, может быть расширено до базы множества A.

Доказательство. 1) Пусть B — база множества A. Если $p \in A \setminus B$, то $B \cup p$ зависимо, поэтому $p \in \langle B \rangle$ по лемме 1. Следовательно, $A \subseteq \langle B \rangle$, т.е. $\langle A \rangle \subseteq \langle B \rangle \subseteq \langle A \rangle$, т.е. $\langle A \rangle = \langle B \rangle$.

- 2) Если $I \subseteq B$, то $|I| \leqslant |B|$. Пусть $p_1 \in I \setminus B$. Тогда $p_1 \notin \langle I \setminus p_1 \rangle$ и множество $B \cup p_1$ зависимо. По лемме 1 имеем $p_1 \in \langle B \rangle$. Следовательно, B не лежит в $\langle I \setminus p_1 \rangle$. Тогда существует $q_1 \in B$ такой, что $q_1 \notin \langle I \setminus p_1 \rangle$. В силу леммы 1 множество $I_1 = (I \setminus p_1) \cup q_1$ независимо и $|I_1| = |I|$, $|I_1 \cap B| > |I \cap B|$. Продолжая действовать аналогичным образом, мы найдем независимое множество $I_t \subseteq B$ такое, что $|I| = |I_t| \leqslant |B|$.
 - 3) Очевидно.

Рангом r(A) подмножества A из E называется общая мощность всех баз из A. Число r = r(M) = r(E) называется **рангом матроида** M(E).

Лемма 3. Для любого подмножества A из E выполняется

- 1) $0 \le r(A) \le |A|$;
- 2) $r(A) = |A| \Leftrightarrow A$ независимое множество;
- 3) $r(A) = r(\langle A \rangle) = \dim(\langle A \rangle)$, где dim функция размерности в решетке Sub*E* листов матроида *M*.

Доказательство. 1) и 2) очевидны.

3) Пусть $B = \{b_1, \ldots, b_k\}$ — база множества A. По лемме 2 имеем $\langle B \rangle = \langle A \rangle$. Если $p \in \langle A \rangle \setminus B$, то $p \in \langle B \rangle$ и множество $B \cup p$ зависимо в силу леммы 1. Следовательно, B — база для $\langle A \rangle$, поэтому $r(A) = r(\langle A \rangle) = k$. В силу независимости B для любого $i = 1, \ldots, k-1$ выполняется

$$b_{i+1} \notin \langle b_1, \ldots, b_i \rangle$$
.

Тогда, в силу леммы 2 из предыдущего раздела, получаем цепочку покрытий $\langle \emptyset \rangle \subset \langle b_1 \rangle \subset \langle b_1, b_2 \rangle \subset \ldots \subset \langle b_1, \ldots, b_k \rangle = \langle A \rangle$,

т. е. $k = \dim(\langle A \rangle)$ в решетке Sub E и лемма доказана.

Пусть A — лист матроида M.

Множество $H \subseteq A$ называется *порождающим для листа* A, если $\langle H \rangle = A$.

Порождающие множества листа E называются *порождающими множествами матроида* M.

Лемма 4. Минимальные порождающие множества листа A и только они являются базами для A.

Доказательство. \Rightarrow . Пусть H — минимальное порождающее множество для A. Пусть B — база для H. Так как $A = \langle H \rangle$, имеем r(H) = r(A), поэтому B — база и для A. Тогда $\langle B \rangle = A$ и, следовательно, H = B в силу минимальности H.

 \Leftarrow . Пусть B — база для листа A. Тогда $A = \langle B \rangle$. Если $H \subset B$ и $\langle H \rangle = A$, то r(A) = r(H) < r(B), что противоречиво.

Лемма 5. Для любого $A \subseteq E$ и $p \in E$ выполняется

- 1) $p \in \langle A \rangle \Leftrightarrow p \in A$ или существует $I \subseteq A$ такое, что $I \in Ind$ и $I \cup p \notin Ind$;
- 2) $p \in \langle A \rangle \Leftrightarrow p \in A$ или существует $C \in Ccl$ такое, что $p \in C \subseteq A \cup p$;
- 3) $p \in \langle A \rangle \Leftrightarrow r(A \cup p) = r(A)$.

Доказательство. 1) Пусть $p \in \langle A \rangle \setminus A$ и B — база для A. В силу леммы 3 имеем $r(A) = r(\langle A \rangle)$, поэтому B — база и для $\langle A \rangle$. Следовательно, $B \cup p \notin Ind$ и, кроме того, $B \in Ind$.

Обратно, пусть $I \subseteq A$, $I \in \text{Ind } u \ I \cup p \notin \text{Ind.}$ Множество $I \cup p$ зависимо, поэтому в силу леммы 1 имеем $p \in \langle I \rangle \subseteq \langle A \rangle$.

- 2) эквивалентно 1) по определению циклов.
- 3) Очевидно, $\langle A \cup p \rangle \supseteq \langle A \rangle$. Тогда $p \in \langle A \rangle \Leftrightarrow \langle A \cup p \rangle = \langle A \rangle \Leftrightarrow \dim \langle A \cup p \rangle = \dim \langle A \rangle \Leftrightarrow r(A \cup p) = r(A)$.